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Asymptotic expansions of solutions of optimal control problems for weakly controllable systems are constructed as series of non- 
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Control by small signals is encountered in controlling spacecraft with low thrust (electronuclear engines, 
a solar sail, etc.), in a variety of correction problems and in economics [l]. A first approximation to the 
solution has been constructed in the problem of continuous optimal control of weakly controllable 
systems without restrictions on the values of the controls, by substituting a postulated asymptotic 
expansion of the solution into the condition of the problem [l]. Continuous weakly controllable systems 
with a restriction on the control have been considered within the limits of the first approximation [2-6]. 
The method of constructing an asymptotic expansion of the solution of an optimal control problem by 
substituting the postulated asymptotic expansion into the condition of the problem, and then determining 
a series of optimal control problems to find the expansion terms, have been used for singularly perturbed 
systems without restrictions on the values of the controls; this method has been called the “direct scheme” 
[7,8]. In that context, asymptotic expansions of the solution, of arbitrary accuracy, have been constructed; 
estimates have been obtained for the closeness of the approximate solution to the exact one, and it has 
been established that the value of the minimized functional does not increase with each new 
approximation [7, 81. Similar results have been obtained for continuous optimal control problems for 
weakly controllable systems [9], and for non-linear discrete optimal control problems with small step- 
size, without restrictions on the control [lo, 111. 

In this paper, the direct scheme is used to construct asymptotic expansions of solutions of optimal 
control problems for discrete weakly controllable systems without restrictions on the control. Estimates 
are proved for the closeness of the approximate solution to the exact one, in terms of the control, the 
trajectory and the functional, and it is shown that the values of the minimized functional do not increase 
when a new approximation to the control is used. 

1. FORMULATION OF THE PROBLEM 

The following discrete problem is considered for a weakly controllable system 

P, :JE(u)= 2 4(x(k))+E~~1G,(~(I),~(f))-_) min 
k=O I=0 u 

x(f~I)=fi(x(f))+Eq~(x(l),u(l)), l=O,l,...,N-I 

x(0)=x0 

(1.1) 

(l-2) 

0.3) 

where 

x(k)~X, k=O,l,..., N, u(f)~U, l=O,l,..., N-l 
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X and U are real finite-dimensional Euclidean spaces and the number of steps N is fixed; everywhere 
henceforth, it will be assumed that k takes the values 0, 1, . . . , N, I takes the values 0, 1, . . . , N-l, Fk 
and G, are scalar functions, f1 and gl are functions with values in X, and E > 0 is a small parameter; the 
functions Fk, GI, fr and gr occurring in (1.1) and (1.2) are assumed to be continuously differentiable a 
sufficient number of times with respect to their arguments. 

Where E = 0 system (1.2) turns out to be uncontrollable and, solving the problem 

PO : x(f + I) = fr(n(f)),x(O) = x0 

one obtains the unperturbed trajectory. 
Asymptotic expansions of the solution of problem (l.l)-(1.3) will be constructed using the direct 

scheme. The results of this paper were announced by the author in [12]. 

2. THE FORMALISM OF THE CONSTRUCTION 
OF ASYMPTOTIC EXPANSIONS 

A solution of the perturbed problem (l.l)-(1.3) will the sought in series form 

x(k)= C &jXj(k),U(l)= ~ &‘uj(l) 

(2.1) 

j--O j>O 

We substitute relations (2.1) into expressions (l.l)-(1.3), expand the right-hand sides of (1.1) and (1.2) 
in series in powers of E, and then equate the coefficients of like powers of E in Eqs (1.2) and (1.3). Then 
the functional to be minimized may be written in the form 

J,(u)= c &jJj 
jb0 

(2.2) 

and relations (1.2) and (1.3) yield equations and initial conditions for the quantitiesxi(k) 

xo(l+I)=fi,x,(I+l)=(fr)rx,(I)+~,’... 

Xj([+I)=(~)*xj(f)+(~~)uuj-l(l)+[ji+E~,lj, i>l 
(2.3) 

x0(0) = x0. xj(0)=O, j2 1 (2.4) 

Throughout this paper, and expression of the form (f!), will stand for the derivative of the functionfi 
with respect to the variable x and the bar will mean that the values of the appropriate functions and 
their derivatives are calculated at x = x0, u = uo. The following notation will be used for the expansion 
of an arbitrary function h = h(E) in powers of E 

h(~)= C E’hj ={h),_, +E”[hl, +a(&‘+‘), (h],_, =n~ E’hj, fhl, =h, 
jP0 j=O 

where a(~“+~) denotes the sum of terms of the expansion of order &“+I and higher. A tilde over a function 
will mean that the function is evaluated at x(k) = -Y-l(k), u(l) = ii-z(l), where 

.i-1 
Xi_,(k)= C Eixi(k), iii_z(r)='~* &'ui(l) (2.5) 

i=O i=O 

In particular, we have 
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It is obvious that x0(k) is a solution of problem Pa. 
Let us write down the first coefficients of expansion (2.2). The coefficient Jo = F Fk is known after 

Problem Pa has been solved. We have 

J, = Z(G>,+(k)+C G 
k I 

J, =~((F,),rz(k)~~(~)**x~(~))+~((G,),x,(l))~~,(~)) 

J, =~((~),~~(k)+(~)~*x,(k)x,(k)c~(~)~,x:(k))+ 
k 

+ ~((~)r~*(I)+(~)uU2(f)+~t(~)~*x:(f)+(~,)~*U:(f))+(~~)~“U,(f)x,(f)) 
I 

To determine the pair of functions (~,(k)~ us(l)), we consider the problem 

4 :JI(uo)= J~(u~)=(~~;N)~x~(N)+C ((e),x,(f)+C,)+min 
I “0 

~,(~+~)=(fr)x~,(f)+~~.x,(o)=o 

Note that in Problem Pi the functional to be minimized and the equation of state are linear with respect 
to x,(l). 

We shall assume that the following condition is satisfied. 

Condition 1. Problem PI has a unique solution which is defined by the following equality (see, e.g. 

P31) 

Mw)"o~/) =-cG,), +wou+ Oc&), =o P-4 

The Hamiltonian H,(f) is given by the formula 

The adjoint variable w. is the solution of the problem 

Problem (2.7), which determines the adjoint variable, is solved independently of the .problem of 
determining the statexi(k) and the control u,,(l). If Eq. (2.6) yields a unique expression for us(l) in terms 
of ~a(/ + l), then, after finding the adjoint variable and then the control, the state+(k) is found from 
the recurrence relations (2.3) of the equation of state. 

Using relations (2.7) (2.6) (2.3) and (2.4), let us transform the terms in the expression forJ2 which 
remain unknown after Problems PO and PI have been solved. We obtain 

F @),x,(k)+? (G),r#= 

= 7 (-ylJ(f)+ vo(f+ Mj;),)X2(f)- WoW).QW)+ F vo(f+ ~)(iTl),u,(f) = 

Thus, the coefficient J2 in expansion (2.2) depends only on the solutions of Problems PO and PI. 
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Carrying out similar transformations for part of the terms in the expression for J3, we have 

Taking the last relation into account, let 7, denote the sum of those terms in the expression for Js 
that are still unknown after Problems PO and PI have been solved. 

To determine the pair of functions (x2, ut), consider the linearly quadratic problem 

P2 :&(u,)=QNxZ(N)+C 
I 

Q,x,(~)+~~,u:(l)+S,u,(f) 

The functions Q,,, = (~,v)X2~I(N), Ql = (~l)J~I(~) + (G)X - wo(l + l)((fi)JX1(0 + (&), 
RI = (~,),z - vo(l + l)((&),z, SI = ((@UX - wa(f + l)(&),,)xI(I) depend on the solutions of Problems 
PO and P,. 

We shall assume that the following condition is satisfied. 

Condition 2. The operators RI are positive definite. 
Then the linearly quadratic problem Pz is uniquely solvable, that is, the second approximation 

(x2, ut) is uniquely defined. 
Let us write down the Hamiltonian for Problem P, (see, e.g. [13]) 

H(I) = -Fj(N)) - EG,($), u(l)) + WV + l>(fi (x(0) + E&(N), UN))) 

where the adjoint variable w is the solution of the problem 

VU) = U-M),,,, = --(F,(N))+ EGM)N))), + 

+ WU + 0(fi(x(0) + E&(N)* u(0)), 
(2.8) 

W(N) = -VN(X(N))), (2.9) 

Since the problem under consideration involves no restrictions on the control, a necessary condition 
for an optimal control in Problem P, is that 

(H(0),u, = E(_(G1 (x(l)* u(0)), + V(l + V(&(N), u(0)), > = 0 (2.10) 

Let us substitute expansions (2.1) and the expression 

W(k) = c EjVjW 
j>O 

(2.11) 

into relations (2.8)-(2.10). 
Equating coefficients of the least and next powers of E in the expressions obtained, we obtain Eqs 

(2.6) and (2.7), which follow from the optimality condition for the control in Problem PI, and the 
equalities 

wl(r)=_(~)l*x,(l)-(~)I),+Wo(l+l)((j;)I*x,(l)+(~)*)+W,(l+l)(fi)x (2.12) 

w,(N)=-(~,)X,x,fN) (2.13) 

+w,U+l)(8r)” =0 
(2.14) 
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If we write down the Maximum Principle for Problem P2 (see, e.g. [13]), the control u,(l) will satisfy 
Eq. (2.14) and the adjoint variable v,(k) will be a solution of problem (2.12)-(2.13). 

Thus, the equations for the state, control and adjoint variable, obtained using the necessary condition 
for a control in Problems PI and P2 to be optimal, are identical with the equations for the corresponding 
approximation of the asymptotic expansion of the solution of problem (1.2) (1.3), (2.8)-(2.10) obtained 
from the necessary condition for a control in Problem PE to be optimal. 

We now proceed to higher approximations. 
Consider Problems Pj(j 2 0). Forj = 0, 1, Problems PO and PI have already been defined; forj > 2, 

Problems Pj are linear-quadratic problems of the following form 

pj : 3j(uj_~)=[(~~),lj-~xj(N)+~([-~j-~(’+1)(ji +&i/)X + 
I 

+ (6 +EC,)rlj_lXj(I)+ ’ ~R,u~-l(I) + f.-$j-2(I+J)(i,)u +(~,)uIj-~uj-l(O) --) F_: (2.15) 
J 

Xj(l+l)=(~,),Xj(l)+(~,),“j-l(l)+[ji +@[lj* Xj(O)=O (2.16) 

Recall that a tilde over the symbols for the functions f,, gl, Fk, G, and their derivatives means that 
they are evaluated at x = Zj-1, u = Gj-2, where_.j_i(k) and Uj_2(1) are defined by (2.5) the pair (x~, ui_i) 
is a solution of Problem Pi, and the function vi-2 is defined by the equality 

i-2 
\7ij_*tk) = C &‘Witk) 

i=O 
(2.17) 

where vi(k) is the adjoint variable in Problem Pi+l. 
Note that the equation of state in Problem Pj is the coefficient of &j in the equality obtained by 

substituting (2.1) into (1.2) and expanding the resulting expressions in series in powers of E. 
Forj =_2, relations (2.15) and (2.16) yield Problem Pz, already considered, in which the performance 

criterion Jl(ui) is the transformed expression of the coefficient J3 in expansion (2.2), omitting the terms 
known after Problems PO and PI have been solved. 

The Hamiltonian for Problem Pj (j 3 2) is 

where the adjoint variable vj-1 is the solution of the problem 

Wj_~(f)=(H,(l)),i(,,=-[-~j_~(f+i)(fi+E~~)r+(F;+Ei;l)Ilj-l + 

+ Wj-l(l+l)(j;), 

Vj_l(N)=4(kN),lj-l 

The necessary condition for optimal@ of the control in Problem Pj (j 3 2) is the equality 

V$(OLj_,(l) = -R~Uj_i(f)-I_Wj_2(f+ l)(g,), +(‘,)uIj-~ + 

(2.18) 

(2.19) 

+ vj_[(f+l)(g/)U =O (2.20) 

Theorem 1. The equations for the state, control and adjoint variable, obtained from the necessary 
condition for optimality of the control in Problem Pm(m 3 l), are identical with the equations for x,, 
u,_~, v,,_~ from asymptotic expansions (2.1) and (2.11) of the solution of problem (1.2) (1.3), 
(2.8)-(2.10) obtained using the necessary condition for optimal@ of the control in Problem P,. 
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Proof. For m = 1,2, the statement of the theorem has already been proved. Suppose it is true for 
m < j. For j 2 2 we introduce the notation 

Au(l)=u(l)-i(j_*(f)=E'-'~j_l(f)+a(E') (2.21) 

where Zj_i(k), Gj-2(1), vj_z(k) are given by formulae (2.5) and (2.17), 
Replacingx, u and w in (1.2), (1.3) and (2.8)-(2.10) by their representations in (2.21), and transforming, 

we obtain 

~j_) (1+ I) + 1Lr(l+ I) = ~ + Ed, + (~ + Ed, ),~(f) + E(g,), ‘U(f) + 

+iE2j-‘(&),2 U;_,(f)+a(E2j), Lb(O) = 0 
2 

Vrj_2(f)+Ej-‘Wj_I(f)=_(~+E~~)x+Ijlj_2(f+’)(_?jfE~l)x+ 

+ Ej-‘vj_l(f + I)(i), +a(Ej) 

~j_2(N)+Ej-‘Wj_l(N)=_(~~)x +a(Ej) 

(2.22) 

(2.23) 

-<C[;>, -Ej-‘(~~)U*Uj_l(f)+~j_2(f+1)(H,)” + 

+ Ej-‘W~(f+I)(~,),~Uj_~(f)+Ej-‘Wj_~(f+I)(~,)~ =a(Ej) (2.24) 

Equating the coefficients of&j in (2.2) and the coefficients of sj-’ in (2.23) and (2.24), we obtain relations 
(2.16) and (2.18)-(2.20), which follow from the necessary condition for optimality of the control in 
Problem Pi. This establishes the statement of the theorem for m = j, and thereby proves Theorem 1. 

Assuming that Conditions 1 and 2 are satisfied the following theorem holds. 

Theorem 2. The coefficient J2m in expansion (2.2) is known after Problems Pi (i = 0, 1, . . . , m) have 
been solved, from which one finds x,(k), u,,(f) (i 2 1). The transformed expression for the coefficient 
J 2m+b omitting terms @own after Problems Pi (i = 0, 1, . . . , m) have been solved, is identical with the 
performance criterion Jm+r in Problem Pm+,. 

Proof. If m = 0, the coefficient Jzm = Jo is known after Problem PO has been solved, and the coefficient 
J 2m+l is the performance criterion in Problem PI. 

If m = 1, it has already been proved that J 2m = J2 is known after Problems-P, and PI have been solved, 
and the transformed expression for J3 yields the performance criterion J2 in the linearly quadratic 
Problem P2; by Condition 2, this defines (xX, ur) uniquely. 

The theorem is thus true for m = 0, 1. 
Now suppose the statement of the theorem is true for 0 G m s n-l (n 2 2). 
Let us assume that solutions have been found in Problems Pj(j = 0, 1, . . . , n). Then Z,(k), U,_,(l), 

Q&_,(k), as defined by formulae (2.5) and (2.17) with j = n + 1, are known functions. 
Let us transform the expression for J,(u) from (1.1) replacing x and u by their representations 

according to (2.21) with j = IE + 1. This gives 

J,(u) = c (4 +(&),&))+EC (Gi +(&b(f)+ 
k I 

p - 
+ (@JU(f)++Gr),* U,2(f))+a(E2”+2) (2.25) 

where the tilde over the symbols for the functions and their derivatives means that they are evaluated 
at x(k) = Z,(k), u(f) = ii,_1(f). 

Using the notation introduced previously, we deduce from (2.25) and (2.23), (2.24) with j = II + 1 
that 
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J,(u) = Gi&+, +~(~~),~,_,~(N)+~*“+‘~(~~),l,X,+,(N)+ 
+nce +G12n+l +ufi +E~,;l)x}n_,~(~)+&2n+‘r(F;+E~,)rlnX,+,(I)+ 

I 

& 2n+l 

+ ~~(~1),1,~~(~)+~*“+‘[~5;1)~1~~,(~)+- 2 (~,)U2~nZ(I))+a(~2n+2) 

16 +G)Jn_, = -~n_,(o+~~n_,u+ NJ +Eii,)xln_, 

@,_,(W= -~~~d,L, 

IE@,),), =~E~“_,(~+~)(&)uLI 

(2.26) 

Taking the last three equalities into consideration, as well as the condition AX@) = 0 and the rdation 
obtained from (2.22) with j = n + 1 by multiplying it by Vnn-l(l + 1) 

($,_,(l+l)(~ +E~l),l,_,hx(~)+(&~I,_,(~+l)(~l)”)”~(~)= 

= (ipn_,(f+ I)Ar(f+ l)j*n+, +I@n_,(f+ Wfl(f+O- 

-iji,_,(f+l>(jj +Ej,)l2”+, -~*“+‘r~“_,(f+Mj; +~~)xlnXn+rW- 

E2n+I 

we deduce from (2.26) that 

J&)=(&+C (i;;+E~,++~-,(f+1)(X,(f+1)-_--~I)}*”+*+ 
I 

+~2n+‘(t(~N)xlnX,+, (V+C (t-+“_,u+M.& +&&lx + 

+$-ry,(~+ WQ +G+ b,2UN)+a(E*“+*) 

It is obvious from this expression that J2,, (the coefficient of E 2n in the expansion of J,(u) in powers of 
E) is known after Problems Pj(j = 0, 1, . . , , 
(the coefficient of E?+’ 

n) have been solved. If we take the sum of the terms in J2n+l 
_), which depend on the unknowns x,+~ (k) and u,(2), it is identical with the 

performance criterion Jn+l(~,) in ProblemP,+i (see (2.15) withj = IZ + 1). 
This completes the proof of Theorem 2. 

Remarks 1. To obtain Problem P,,+i, it is sufficient to require that the functions occurring in (1.1) and (1.2) should 
possess continuous derivatives with respect to (x, u) in the neighbourhood of (x0, ua), of order up to and including 
2n + 2, but the smoothness of g, and G1 may be one order lower. 

2. The solution of the linearly quadratic Problem 4, j 2 2, assuming Condition 2 is satisfied is uniquely defined 
by the recurrence relations. Indeed, relations (2.18) and (2.19) uniquely define vj_l(f). Given Condition 2, Uj_l(f) 
is uniquely defined from (2.20). Substituting the value found for the optimal control into the first relation of (2.16) 
one obtains recurrence relations (2.16) from which the optimal trajectoryxj(k) can be determined. 

3. ESTIMATES OF THE APPROXIMATE SOLUTION 

Let us assume that solutions have been found for problems Pj(j = 0, 1, . . . , n, n a 1): the functions 
x.(k) and Uj_1(1) (j 2 
(2.5) withj = n + 1). 

1). We shall estimate the approximate solution of problem P,:?,(k), &i(k) (see 

Lemma 1. If for the equation 

Az=F(z,&), ZEZ (3.1) 
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where Z is a Banach space, A is a linear operator defined in the space, and E > 0 is a small parameter, 
the following conditions are satisfied: 

1) A has a bounded inverse; 
2) for any I_L > 0 constants 6 = 6(u) and E o = E~().L) exist such that, if llzill s 6(u) (i = 1, 2), 

0 < E S Ed, then 

3) for 0 < a S so, 

IIF(O,&>ll s dcq, q > 0 (3.3) 

where the constant d is independent of E. 
Then &r, u > 0 exist such that, for 0 < E c Ed, Eq. (3.1) is uniquely solvable in the sphere 

S : 11,~ 11 c S(p), and the solution satisfies the inequality 

H4l s C&4 (3.4) 

where the constant c is independent of E. 

Proof. Taking, for example, u = l/(2 (IA-’ II), 
K’F is contractive in the sphere S. 

one can deduce from inequality (3.2) that for 0 < E G se the operator 

For z2 = 0,O c E G Eg, it follows from (3.2) that 

[A+(z,,E]~ s AA-‘IIc~~]~,II+RA-‘II~F(~,E)I 

Hence, in view of (3.3), it follows that if 

then the operator A-IF maps S into itself. 
By the Contractive Mapping Principle, Eq. (3.1) with 0 < E s Q has a unique solution in the sphere S, which 

can be found by the method of successive approximations. 
We will show that all successive approximationszi + ’ = dF(zi, E), 0 C E S E,, will not exceed c&~ in norm (where 

c is the same constant for all approximations). 
As zeroth approximation, we take z. = 0. 
By inequality (3.3) we have 

Using inequality (3.2) with u = 142 IIA-’ II), 0 c E G .so, we obtain 

11~~116 Uzz -~lll+~t,~=l~A-‘F(zl.~)-A-‘~(O,~)]I+ 

We now apply mathematical induction. 
Suppose that for 0 G j G i, the following inequality is satisfied 

We now have 

HZi+lll s (IZi+l -zill+llzi -Zi-Ill+~~*+ll~* -~lj+~ZIIl 

For j s i, u = l/(2 llA-‘II) and 0 < E c Ed, it follows from inequality (3.2) that 
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Then 

where c = 2 (IA-‘((d is independent of the order of the approximation and of E. 
Hence, the solution of Eq. (3.1) for 0 < E s E~ satisfies estimate (3.4). 

Given Conditions 1 and 2 and assuming E f 0 to be sufficiently small, we shall now show that problem 
(1.2) (1.3) (2.8)-(2.9) is uniquely solvable. With due attention to the notation (2.21) forj = II + 1, 
E f 0, II 2 1, we can state that the solvability of this problem is equivalent to the solvability of the following 
problem 

hrtl+l)=(~)xax(l)+&(~,)uAu(l)+[fi(x,(r)+hx(f))+ 

+~g& (1) + b(l). ii,_, (0 + AM/)) - in (I+ 1) - (j;), b(l) - Ed AN)]. Ax(O) = 0 

~v(1)=~v(I+I)(j;)*+[E(-(F;(i,(l)+Lir([))+ 

+~G&n(l)+ A#. ii,_, (1) + A40))l + (3.5) 

+(~,_,(1+1)+Av(l+l))(fr(X,(I)+hr(l))+g1(~~(1)+~(1), i,_,(0+A4’,)), - 

-+ij,_,(l)-Av(l+ I)(fi,,)l 

tiv(N) = [-E(FN(iJN)+ A4N)))I - a@._,(rn] 

EAu(I) = &R;‘Ayr(f + I>(&)u +[@(-G,&(l)+ AdI). i,,-,(l)+ A4f)))u + 

+($n_,(I+ l)+Av(l+ I))(g,(i,W+Adh &_, (4 + AN))u +R,AMO - AW + I)(g,)u)] 

It is obvious that the corresponding homogeneous linear system 

Ar(1+ I) = (j;), Ml) + E@,), Au(I), ANV = 0 

EAv(O = EWI + I)( .i;), , EAv( N) = 0 (3.6) 

has only a trivial solution. 
Let z be the vector in the space RZrncN + ‘) + rN whose components are h(k), phi, EAu(I), 

m =dimX,r= dim U. Then system (3.5) may be written in the form (3.1), whereA is the linear operator 
defined by the homogeneous linear system (3.6) and which acts in R2”cN + ‘) + rN, while the form of F 
is obvious if one compares systems (3.5) and (3.6) and is defined by the functions in square brackets 
in (3.5). The unique solvability of system (3.6) implies that the operator,4 is invertible. 

Using the theorem of finite increments, one can show that, for every function f(Ax(l), Au(l), 
Ayf(1 + l), I, E) in the bracketed expression in (3.5) for any p > 0 as small as desired and sufficiently 
small E, l[Xi 11, ljui 11, 11 Vi 11 (i = 1, 2), the following inequality holds 

&,J%v&)-f( ~2d42.V24 c P(j+ -X2))++, -~2)1++& -V2j) 

By the equations defining the functions T,,, &_r, v,+r, we have 

(If@, o,o, I, E)(( = O(e”+’ ) 
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Thus, Conditions 1-3 of Lemma 1 hold for system (3.5) when written in the form of (3.1). The lemma 
implies the following. 

Lemma 2. Given Conditions 1 and 2 and sufficiently small E > 0, problem (1.2), (1.3) (2.8)-(2.10) 
has a unique solution in the neighbourhood of (Zn, i&-r, Qn_r) and the following estimates hold 

where the constant c is independent of k, 1 and E. 
Thus, one can construct an asymptotic expansion of the solution of problem (1.2), (1.3), (2.8)-(2.10) 

in non-negative integral powers of E, with the remainder terms Ax, Au, Av of the asymptotic expansion 
satisfying inequalities (3.7). 

We now introduce the notation 

Let u* be some fixed control and letx* be the corresponding trajectory, i.e., the solution of problem 
(1.2), (1.3) for u = u*. 

Lemma3. Foranyr>OconstantsEo>Oandc>OexistsuchthatforO<&~~g, ]I\u*-u~(~ sr 

where x is the trajectory corresponding to the control u. 
The proof of this lemma follows from the form of Eq. (2.3) the continuous differentiability of the 

functions f, and gr and the theorem of finite increments. 
Now, assuming that Conditions 1 and 2 are satisfied and that E # 0 is sufficiently small, we shall show 

that Problem P, is uniquely solvable in some neighbourhood of the control uo. 
Letx*, w and u* denote the solution of problem (1.2), (1.3) (2.8)-(2.10), which exists by Lemma 2. 

Lemma 4. Given Conditions 1 and 2 and sufficiently small E > 0, the function u*(Z) is a locally optimal 
control for Problem PE. 

Proof. Together with the trajectory x* corresponding to control u*, let us consider the trajectory x (the solution 
of problem (1.2), (1.3)) corresponding to a control u in some neighbourhood of u*. By Lemma 3, relations (1.2) yield 

++(g,);* (uubrr*(l))2 + 0(+-u*u’)+0(+4~) (3.8) 

where the asterisk to the right of the parenthesis means that the derivatives are to be evaluated at x =x*, II = ll*. 
Now, by Lemma 3, we deduce from (1.1) that 

Using the expressions for (FN):, (F, + EC,):, (Cl)*, obtained from (2.9), (2.8) and (2.10), respectively, as well as 
expression (3.8), we obtain after reduction the relation 
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Hence, by virtue of estimates (3.7), we obtain 

Therefore, for sufficiently small E > 0, the control u* is indeed locally optimal for Problem P,. 

Theorem 3. Given Conditions 1 and 2 and sufficiently small E > 0, Problem P, is uniquely solvable 
in the neighbourhood of the control u. and its solution u*, x* satisfies the estimates 

u*w-~,_,(1)=0(&“), x’(k) - Z,(k) = o(&““) 

J$,_,)-.I@) = o(&*n+‘) 

(3.10) 

(3.11) 

Proof. The solvability follows from Lemmas 2 and 4. Estimates (3.10) follow from (3.7). Estimate 
(3.11) is derived from (3.9) by setting u = U,_1 and using estimates (3.7). 

Relation (3.11) means that the order (or degree) of sub-optimality of the control ii,._l in Problem PC 
is 2n + 1 (for the definition, see, e.g. [14]). 

Remarks 3. If we let X denote the solution of problem (1.2), (1.3) corresponding to the control Q,_1, then by 
Lemma 3 and estimate (3.10), we have 

x’(k)-i(k)=+“+‘), %k)-~,(k)=O(&“+‘) (3.12) 

4. Estimates (3.10) and (3.11), which have been obtained for an approximate solution of the optimal control 
problem for a discrete weakly controllable system, have the same form as those obtained previously [9] for continuous 
weakly controllable systems. 

5. Replacing u by G,_, andx by.?,, in functional (l.l), we obtain a value of the functional which, by (3.10), will 
differ from the optimum by OF 
functional is of the order of E* 

n+l), while the estimate given by (3.11) for the difference in the values of the 
‘, 

The statement of Theorem 3 and the last remark may be illustrated by the following example. 

Example. Consider the problem of minimizing the functional 

/,(u)=x~2)+~(~~~o~+u~~l~) 

on trajectories of the system 

X(0) = I, X(l) = (X(o,)2 +&u(O)* X(2) = (X(I,)2 +&I) 

where E > 0 is a small parameter. 

(3.13) 

Using equalities (3.13), we infer that the problem of minimizing the functionalJ,(u) may be dealt with by treating 
it as a function of the two variables u(O) and u(l). The solution of the problem is 

The solution of the problem 

&X(l)=(X(o))2, X(2)=(X(l))*, x(O)=1 

is 
x()(0)=1, x0(l)=& x0(2)=1 

The solution of the problem 

~:Jl(uo)=x1(2)+u~(0)+u$(l)-_,min 
MO 

x,(0)=0, X,(l)=2X,~o)+u~(o). x,(2)=2x,(l)+ug(i) 
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is 

Then (see (2.5)) 

&(0)=-I, uG((l)=--x 

x,(0)=0, x1(l)= -1, x1(2)=--X 

Ii,(O)=I, x,(1)=1-&, i,(2)=I-+ 

The solution .Y of system (3.13) for u = uo, 

Z(O)= I, .i(L)=(i(o))* +Eug(O), ,F(2)=(?(1))* +uc& 

(3.15) 

(3.16) 

is 

Hence we obtain 

i(O)=I, _t(l)=l-E, x(2)=1-~&+&* (3.17) 

5,(~)=i(2)+E((UO(0))* +(&-J(l))*)= I-~&+&* (3.18) 

Estimates (3.10)-(3.12) with n = 1 follow from relations (3.14)-(3.18). 
Substituting u. for u and 2, for x in the functional JJu), we get 1 - 5/4~, which differs from the optimal value 

JE(u*) (see (3,14)) by O(E’). 

Theorem 4. Given Conditions 1 and 2 and sufficiently small E > 0, we have 

JE(lii)~ J,(ii;_t), i=1,2 ,..., n-l (3.19) 

where 

i;i(f) = ~Ejuj(l) 

j=O 

If ui f 0, then (3.19) is a strict inequality. 

Proof. If u#) = 0, inequality (3.19) is obvious. 
Let us consider the case when Ui f 0. Expand the solution of problem (1.2), (1.3) for u(l) = &(I) 

(s = i - 1, i) in a series of non-negative integral powers of E. Then, by the algorithm for determining 
the terms of expansion (2.1), the solution will have the form 

z &jxj(k)+o(&s+*) 
j=O 

(see the second estimate in (3.12)). 
Expanding J&Is) (s = i - 1, i) in series (2.2) and using Theorem 2, we obtain 

JE(fii) = 2 Ej Jj +E*~+’ 

j=O 

(&+, + Si+, (Ui)) + o(&*i+*) 

(3.20) 

J.(ai_,)=j~oE’Jj ~&*‘+I (j*i+l + j;+,(O)) + O(&*‘+*) 

where j2i+i depends on Uj (j = 0, 1, . . . , i - l), Xj (j = 0, 1, . . . , i). 
Since Ui is a solution of the linearly quadratic problem P;+l, which is to minimize the functional.?i+l(Ui), 

it follows, by the uniqueness of the optimal control when Ui f 0, that 

Hence, using also Eqs (3.2) it follows that inequality (3.19) is true for sufficiently small E > 0. 
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We have thus established that the values of the minimized functional do not increase with each new 
approximation of the control. 
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